Cargando…
Predicting drug characteristics using biomedical text embedding
BACKGROUND: Drug–drug interactions (DDIs) are preventable causes of medical injuries and often result in doctor and emergency room visits. Previous research demonstrates the effectiveness of using matrix completion approaches based on known drug interactions to predict unknown Drug–drug interactions...
Autores principales: | Shtar, Guy, Greenstein-Messica, Asnat, Mazuz, Eyal, Rokach, Lior, Shapira, Bracha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730627/ https://www.ncbi.nlm.nih.gov/pubmed/36476573 http://dx.doi.org/10.1186/s12859-022-05083-1 |
Ejemplares similares
-
A simplified similarity-based approach for drug-drug interaction prediction
por: Shtar, Guy, et al.
Publicado: (2023) -
Pretrained transformer models for predicting the withdrawal of drugs from the market
por: Mazuz, Eyal, et al.
Publicado: (2023) -
Molecule generation using transformers and policy gradient reinforcement learning
por: Mazuz, Eyal, et al.
Publicado: (2023) -
Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures
por: Shtar, Guy, et al.
Publicado: (2019) -
CDCDB: A large and continuously updated drug combination database
por: Shtar, Guy, et al.
Publicado: (2022)