Cargando…
A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions
In the estimation of item response models, the normality of latent traits is frequently assumed. However, this assumption may be untenable in real testing. In contrast to the conventional three-parameter normal ogive (3PNO) model, a 3PNO model incorporating Ramsay-curve item response theory (RC-IRT)...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730697/ https://www.ncbi.nlm.nih.gov/pubmed/36506999 http://dx.doi.org/10.3389/fpsyg.2022.971126 |
_version_ | 1784845736608792576 |
---|---|
author | Cui, Yuzheng Lu, Jing Zhang, Jiwei Shi, Ningzhong Liu, Jia Meng, Xiangbin |
author_facet | Cui, Yuzheng Lu, Jing Zhang, Jiwei Shi, Ningzhong Liu, Jia Meng, Xiangbin |
author_sort | Cui, Yuzheng |
collection | PubMed |
description | In the estimation of item response models, the normality of latent traits is frequently assumed. However, this assumption may be untenable in real testing. In contrast to the conventional three-parameter normal ogive (3PNO) model, a 3PNO model incorporating Ramsay-curve item response theory (RC-IRT), denoted as the RC-3PNO model, allows for flexible latent trait distributions. We propose a stochastic approximation expectation maximization (SAEM) algorithm to estimate the RC-3PNO model with non-normal latent trait distributions. The simulation studies of this work reveal that the SAEM algorithm produces more accurate item parameters for the RC-3PNO model than those of the 3PNO model, especially when the latent density is not normal, such as in the cases of a skewed or bimodal distribution. Three model selection criteria are used to select the optimal number of knots and the degree of the B-spline functions in the RC-3PNO model. A real data set from the PISA 2018 test is used to demonstrate the application of the proposed algorithm. |
format | Online Article Text |
id | pubmed-9730697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97306972022-12-09 A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions Cui, Yuzheng Lu, Jing Zhang, Jiwei Shi, Ningzhong Liu, Jia Meng, Xiangbin Front Psychol Psychology In the estimation of item response models, the normality of latent traits is frequently assumed. However, this assumption may be untenable in real testing. In contrast to the conventional three-parameter normal ogive (3PNO) model, a 3PNO model incorporating Ramsay-curve item response theory (RC-IRT), denoted as the RC-3PNO model, allows for flexible latent trait distributions. We propose a stochastic approximation expectation maximization (SAEM) algorithm to estimate the RC-3PNO model with non-normal latent trait distributions. The simulation studies of this work reveal that the SAEM algorithm produces more accurate item parameters for the RC-3PNO model than those of the 3PNO model, especially when the latent density is not normal, such as in the cases of a skewed or bimodal distribution. Three model selection criteria are used to select the optimal number of knots and the degree of the B-spline functions in the RC-3PNO model. A real data set from the PISA 2018 test is used to demonstrate the application of the proposed algorithm. Frontiers Media S.A. 2022-11-24 /pmc/articles/PMC9730697/ /pubmed/36506999 http://dx.doi.org/10.3389/fpsyg.2022.971126 Text en Copyright © 2022 Cui, Lu, Zhang, Shi, Liu and Meng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Cui, Yuzheng Lu, Jing Zhang, Jiwei Shi, Ningzhong Liu, Jia Meng, Xiangbin A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions |
title | A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions |
title_full | A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions |
title_fullStr | A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions |
title_full_unstemmed | A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions |
title_short | A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions |
title_sort | stochastic approximation expectation maximization algorithm for estimating ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730697/ https://www.ncbi.nlm.nih.gov/pubmed/36506999 http://dx.doi.org/10.3389/fpsyg.2022.971126 |
work_keys_str_mv | AT cuiyuzheng astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT lujing astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT zhangjiwei astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT shiningzhong astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT liujia astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT mengxiangbin astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT cuiyuzheng stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT lujing stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT zhangjiwei stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT shiningzhong stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT liujia stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions AT mengxiangbin stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions |