Cargando…

A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions

In the estimation of item response models, the normality of latent traits is frequently assumed. However, this assumption may be untenable in real testing. In contrast to the conventional three-parameter normal ogive (3PNO) model, a 3PNO model incorporating Ramsay-curve item response theory (RC-IRT)...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Yuzheng, Lu, Jing, Zhang, Jiwei, Shi, Ningzhong, Liu, Jia, Meng, Xiangbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730697/
https://www.ncbi.nlm.nih.gov/pubmed/36506999
http://dx.doi.org/10.3389/fpsyg.2022.971126
_version_ 1784845736608792576
author Cui, Yuzheng
Lu, Jing
Zhang, Jiwei
Shi, Ningzhong
Liu, Jia
Meng, Xiangbin
author_facet Cui, Yuzheng
Lu, Jing
Zhang, Jiwei
Shi, Ningzhong
Liu, Jia
Meng, Xiangbin
author_sort Cui, Yuzheng
collection PubMed
description In the estimation of item response models, the normality of latent traits is frequently assumed. However, this assumption may be untenable in real testing. In contrast to the conventional three-parameter normal ogive (3PNO) model, a 3PNO model incorporating Ramsay-curve item response theory (RC-IRT), denoted as the RC-3PNO model, allows for flexible latent trait distributions. We propose a stochastic approximation expectation maximization (SAEM) algorithm to estimate the RC-3PNO model with non-normal latent trait distributions. The simulation studies of this work reveal that the SAEM algorithm produces more accurate item parameters for the RC-3PNO model than those of the 3PNO model, especially when the latent density is not normal, such as in the cases of a skewed or bimodal distribution. Three model selection criteria are used to select the optimal number of knots and the degree of the B-spline functions in the RC-3PNO model. A real data set from the PISA 2018 test is used to demonstrate the application of the proposed algorithm.
format Online
Article
Text
id pubmed-9730697
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-97306972022-12-09 A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions Cui, Yuzheng Lu, Jing Zhang, Jiwei Shi, Ningzhong Liu, Jia Meng, Xiangbin Front Psychol Psychology In the estimation of item response models, the normality of latent traits is frequently assumed. However, this assumption may be untenable in real testing. In contrast to the conventional three-parameter normal ogive (3PNO) model, a 3PNO model incorporating Ramsay-curve item response theory (RC-IRT), denoted as the RC-3PNO model, allows for flexible latent trait distributions. We propose a stochastic approximation expectation maximization (SAEM) algorithm to estimate the RC-3PNO model with non-normal latent trait distributions. The simulation studies of this work reveal that the SAEM algorithm produces more accurate item parameters for the RC-3PNO model than those of the 3PNO model, especially when the latent density is not normal, such as in the cases of a skewed or bimodal distribution. Three model selection criteria are used to select the optimal number of knots and the degree of the B-spline functions in the RC-3PNO model. A real data set from the PISA 2018 test is used to demonstrate the application of the proposed algorithm. Frontiers Media S.A. 2022-11-24 /pmc/articles/PMC9730697/ /pubmed/36506999 http://dx.doi.org/10.3389/fpsyg.2022.971126 Text en Copyright © 2022 Cui, Lu, Zhang, Shi, Liu and Meng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Psychology
Cui, Yuzheng
Lu, Jing
Zhang, Jiwei
Shi, Ningzhong
Liu, Jia
Meng, Xiangbin
A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions
title A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions
title_full A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions
title_fullStr A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions
title_full_unstemmed A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions
title_short A stochastic approximation expectation maximization algorithm for estimating Ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions
title_sort stochastic approximation expectation maximization algorithm for estimating ramsay-curve three-parameter normal ogive model with non-normal latent trait distributions
topic Psychology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730697/
https://www.ncbi.nlm.nih.gov/pubmed/36506999
http://dx.doi.org/10.3389/fpsyg.2022.971126
work_keys_str_mv AT cuiyuzheng astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT lujing astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT zhangjiwei astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT shiningzhong astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT liujia astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT mengxiangbin astochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT cuiyuzheng stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT lujing stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT zhangjiwei stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT shiningzhong stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT liujia stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions
AT mengxiangbin stochasticapproximationexpectationmaximizationalgorithmforestimatingramsaycurvethreeparameternormalogivemodelwithnonnormallatenttraitdistributions