Cargando…
Machine Learning with Enormous “Synthetic” Data Sets: Predicting Glass Transition Temperature of Polyimides Using Graph Convolutional Neural Networks
[Image: see text] In the present work, we address the problem of utilizing machine learning (ML) methods to predict the thermal properties of polymers by establishing “structure–property” relationships. Having focused on a particular class of heterocyclic polymers, namely polyimides (PIs), we develo...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730753/ https://www.ncbi.nlm.nih.gov/pubmed/36506114 http://dx.doi.org/10.1021/acsomega.2c04649 |