Cargando…
Machine Learning with Enormous “Synthetic” Data Sets: Predicting Glass Transition Temperature of Polyimides Using Graph Convolutional Neural Networks
[Image: see text] In the present work, we address the problem of utilizing machine learning (ML) methods to predict the thermal properties of polymers by establishing “structure–property” relationships. Having focused on a particular class of heterocyclic polymers, namely polyimides (PIs), we develo...
Autores principales: | Volgin, Igor V., Batyr, Pavel A., Matseevich, Andrey V., Dobrovskiy, Alexey Yu., Andreeva, Maria V., Nazarychev, Victor M., Larin, Sergey V., Goikhman, Mikhail Ya., Vizilter, Yury V., Askadskii, Andrey A., Lyulin, Sergey V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730753/ https://www.ncbi.nlm.nih.gov/pubmed/36506114 http://dx.doi.org/10.1021/acsomega.2c04649 |
Ejemplares similares
-
Structural Ordering in SWCNT-Polyimide Nanocomposites and Its Influence on Their Mechanical Properties
por: Larin, Sergey V., et al.
Publicado: (2018) -
The Transport Properties of Semi-Crystalline Polyetherimide BPDA-P3 in Amorphous and Ordered States: Computer Simulations
por: Dobrovskiy, Alexey Y., et al.
Publicado: (2022) -
Transport Properties of Thermoplastic R-BAPB Polyimide: Molecular Dynamics Simulations and Experiment
por: Volgin, Igor V., et al.
Publicado: (2019) -
Correction: Toward realistic computer modeling of paraffin-based composite materials: critical assessment of atomic-scale models of paraffins
por: Volgin, Igor V., et al.
Publicado: (2020) -
Toward realistic computer modeling of paraffin-based composite materials: critical assessment of atomic-scale models of paraffins
por: Glova, Artyom D., et al.
Publicado: (2019)