Cargando…
Improving the detection of new lesions in multiple sclerosis with a cascaded 3D fully convolutional neural network approach
Longitudinal magnetic resonance imaging (MRI) has an important role in multiple sclerosis (MS) diagnosis and follow-up. Specifically, the presence of new lesions on brain MRI scans is considered a robust predictive biomarker for the disease progression. New lesions are a high-impact prognostic facto...
Autores principales: | Salem, Mostafa, Ryan, Marwa Ahmed, Oliver, Arnau, Hussain, Khaled Fathy, Lladó, Xavier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730806/ https://www.ncbi.nlm.nih.gov/pubmed/36507318 http://dx.doi.org/10.3389/fnins.2022.1007619 |
Ejemplares similares
-
A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2019) -
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
por: Valverde, Sergi, et al.
Publicado: (2018) -
Evaluating the use of synthetic T1-w images in new T2 lesion detection in multiple sclerosis
por: Valencia, Liliana, et al.
Publicado: (2022) -
A fully automated pipeline for brain structure segmentation in multiple sclerosis
por: González-Villà, Sandra, et al.
Publicado: (2020) -
A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis
por: Salem, Mostafa, et al.
Publicado: (2017)