Cargando…

Visualising spatial heterogeneity in glioblastoma using imaging habitats

Glioblastoma is a high-grade aggressive neoplasm characterised by significant intra-tumoral spatial heterogeneity. Personalising therapy for this tumour requires non-invasive tools to visualise its heterogeneity to monitor treatment response on a regional level. To date, efforts to characterise glio...

Descripción completa

Detalles Bibliográficos
Autores principales: Waqar, Mueez, Van Houdt, Petra J., Hessen, Eline, Li, Ka-Loh, Zhu, Xiaoping, Jackson, Alan, Iqbal, Mudassar, O’Connor, James, Djoukhadar, Ibrahim, van der Heide, Uulke A., Coope, David J., Borst, Gerben R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731157/
https://www.ncbi.nlm.nih.gov/pubmed/36505856
http://dx.doi.org/10.3389/fonc.2022.1037896
_version_ 1784845847495704576
author Waqar, Mueez
Van Houdt, Petra J.
Hessen, Eline
Li, Ka-Loh
Zhu, Xiaoping
Jackson, Alan
Iqbal, Mudassar
O’Connor, James
Djoukhadar, Ibrahim
van der Heide, Uulke A.
Coope, David J.
Borst, Gerben R.
author_facet Waqar, Mueez
Van Houdt, Petra J.
Hessen, Eline
Li, Ka-Loh
Zhu, Xiaoping
Jackson, Alan
Iqbal, Mudassar
O’Connor, James
Djoukhadar, Ibrahim
van der Heide, Uulke A.
Coope, David J.
Borst, Gerben R.
author_sort Waqar, Mueez
collection PubMed
description Glioblastoma is a high-grade aggressive neoplasm characterised by significant intra-tumoral spatial heterogeneity. Personalising therapy for this tumour requires non-invasive tools to visualise its heterogeneity to monitor treatment response on a regional level. To date, efforts to characterise glioblastoma’s imaging features and heterogeneity have focussed on individual imaging biomarkers, or high-throughput radiomic approaches that consider a vast number of imaging variables across the tumour as a whole. Habitat imaging is a novel approach to cancer imaging that identifies tumour regions or ‘habitats’ based on shared imaging characteristics, usually defined using multiple imaging biomarkers. Habitat imaging reflects the evolution of imaging biomarkers and offers spatially preserved assessment of tumour physiological processes such perfusion and cellularity. This allows for regional assessment of treatment response to facilitate personalised therapy. In this review, we explore different methodologies to derive imaging habitats in glioblastoma, strategies to overcome its technical challenges, contrast experiences to other cancers, and describe potential clinical applications.
format Online
Article
Text
id pubmed-9731157
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-97311572022-12-09 Visualising spatial heterogeneity in glioblastoma using imaging habitats Waqar, Mueez Van Houdt, Petra J. Hessen, Eline Li, Ka-Loh Zhu, Xiaoping Jackson, Alan Iqbal, Mudassar O’Connor, James Djoukhadar, Ibrahim van der Heide, Uulke A. Coope, David J. Borst, Gerben R. Front Oncol Oncology Glioblastoma is a high-grade aggressive neoplasm characterised by significant intra-tumoral spatial heterogeneity. Personalising therapy for this tumour requires non-invasive tools to visualise its heterogeneity to monitor treatment response on a regional level. To date, efforts to characterise glioblastoma’s imaging features and heterogeneity have focussed on individual imaging biomarkers, or high-throughput radiomic approaches that consider a vast number of imaging variables across the tumour as a whole. Habitat imaging is a novel approach to cancer imaging that identifies tumour regions or ‘habitats’ based on shared imaging characteristics, usually defined using multiple imaging biomarkers. Habitat imaging reflects the evolution of imaging biomarkers and offers spatially preserved assessment of tumour physiological processes such perfusion and cellularity. This allows for regional assessment of treatment response to facilitate personalised therapy. In this review, we explore different methodologies to derive imaging habitats in glioblastoma, strategies to overcome its technical challenges, contrast experiences to other cancers, and describe potential clinical applications. Frontiers Media S.A. 2022-11-24 /pmc/articles/PMC9731157/ /pubmed/36505856 http://dx.doi.org/10.3389/fonc.2022.1037896 Text en Copyright © 2022 Waqar, Van Houdt, Hessen, Li, Zhu, Jackson, Iqbal, O’Connor, Djoukhadar, van der Heide, Coope and Borst https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Waqar, Mueez
Van Houdt, Petra J.
Hessen, Eline
Li, Ka-Loh
Zhu, Xiaoping
Jackson, Alan
Iqbal, Mudassar
O’Connor, James
Djoukhadar, Ibrahim
van der Heide, Uulke A.
Coope, David J.
Borst, Gerben R.
Visualising spatial heterogeneity in glioblastoma using imaging habitats
title Visualising spatial heterogeneity in glioblastoma using imaging habitats
title_full Visualising spatial heterogeneity in glioblastoma using imaging habitats
title_fullStr Visualising spatial heterogeneity in glioblastoma using imaging habitats
title_full_unstemmed Visualising spatial heterogeneity in glioblastoma using imaging habitats
title_short Visualising spatial heterogeneity in glioblastoma using imaging habitats
title_sort visualising spatial heterogeneity in glioblastoma using imaging habitats
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731157/
https://www.ncbi.nlm.nih.gov/pubmed/36505856
http://dx.doi.org/10.3389/fonc.2022.1037896
work_keys_str_mv AT waqarmueez visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT vanhoudtpetraj visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT hesseneline visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT likaloh visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT zhuxiaoping visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT jacksonalan visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT iqbalmudassar visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT oconnorjames visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT djoukhadaribrahim visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT vanderheideuulkea visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT coopedavidj visualisingspatialheterogeneityinglioblastomausingimaginghabitats
AT borstgerbenr visualisingspatialheterogeneityinglioblastomausingimaginghabitats