Cargando…
Machine learning approach for hemorrhagic transformation prediction: Capturing predictors' interaction
BACKGROUND AND PURPOSE: Patients with ischemic stroke frequently develop hemorrhagic transformation (HT), which could potentially worsen the prognosis. The objectives of the current study were to determine the incidence and predictors of HT, to evaluate predictor interaction, and to identify the opt...
Autores principales: | Elsaid, Ahmed F., Fahmi, Rasha M., Shehta, Nahed, Ramadan, Bothina M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731336/ https://www.ncbi.nlm.nih.gov/pubmed/36504664 http://dx.doi.org/10.3389/fneur.2022.951401 |
Ejemplares similares
-
Machine Learning-Based Model for Prediction of Hemorrhage Transformation in Acute Ischemic Stroke After Alteplase
por: Xu, Yanan, et al.
Publicado: (2022) -
MRI-Based Predictors of Hemorrhagic Transformation in Patients With Stroke Treated by Intravenous Thrombolysis
por: El Nawar, Rody, et al.
Publicado: (2019) -
Delirium detection using wearable sensors and machine learning in patients with intracerebral hemorrhage
por: Ahmed, Abdullah, et al.
Publicado: (2023) -
Post-ASPECTS based on hyperdensity in NCCT immediately after thrombectomy is an ultra-early predictor of hemorrhagic transformation and prognosis
por: Chen, Lulu, et al.
Publicado: (2022) -
Automatic Machine-Learning-Based Outcome Prediction in Patients With Primary Intracerebral Hemorrhage
por: Wang, Hsueh-Lin, et al.
Publicado: (2019)