Cargando…
The geometry of representational drift in natural and artificial neural networks
Neurons in sensory areas encode/represent stimuli. Surprisingly, recent studies have suggested that, even during persistent performance, these representations are not stable and change over the course of days and weeks. We examine stimulus representations from fluorescence recordings across hundreds...
Autores principales: | Aitken, Kyle, Garrett, Marina, Olsen, Shawn, Mihalas, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731438/ https://www.ncbi.nlm.nih.gov/pubmed/36441762 http://dx.doi.org/10.1371/journal.pcbi.1010716 |
Ejemplares similares
-
Familiarity modulated synapses model visual cortical circuit novelty responses
por: Aitken, Kyle, et al.
Publicado: (2023) -
Neural population dynamics of computing with synaptic modulations
por: Aitken, Kyle, et al.
Publicado: (2023) -
The representation of context in mouse hippocampus is preserved despite neural drift
por: Keinath, Alexandra T., et al.
Publicado: (2022) -
Neural population geometry: An approach for understanding biological and artificial neural networks
por: Chung, SueYeon, et al.
Publicado: (2021) -
Artificial neural networks for the prediction of peptide drift time in ion mobility mass spectrometry
por: Wang, Bing, et al.
Publicado: (2010)