Cargando…
Efficient inference and identifiability analysis for differential equation models with random parameters
Heterogeneity is a dominant factor in the behaviour of many biological processes. Despite this, it is common for mathematical and statistical analyses to ignore biological heterogeneity as a source of variability in experimental data. Therefore, methods for exploring the identifiability of models th...
Autores principales: | Browning, Alexander P., Drovandi, Christopher, Turner, Ian W., Jenner, Adrianne L., Simpson, Matthew J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731444/ https://www.ncbi.nlm.nih.gov/pubmed/36441811 http://dx.doi.org/10.1371/journal.pcbi.1010734 |
Ejemplares similares
-
Identifying cell-to-cell variability in internalization using flow cytometry
por: Browning, Alexander P., et al.
Publicado: (2022) -
A comparison of approximate versus exact techniques for Bayesian parameter inference in nonlinear ordinary differential equation models
por: Alahmadi, Amani A., et al.
Publicado: (2020) -
Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using approximate Bayesian computation
por: Carr, Michael J., et al.
Publicado: (2021) -
Numerical method for parameter inference of systems of nonlinear ordinary differential equations with partial observations
por: Chen, Yu, et al.
Publicado: (2021) -
Computationally efficient mechanism discovery for cell invasion with uncertainty quantification
por: VandenHeuvel, Daniel J., et al.
Publicado: (2022)