Cargando…
Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury
Traumatic brain injury (TBI) is characterized by cellular damage and inflammation in lesioned brain tissue. Ferulic acid has been shown to have a melioration effect on neurological functions. However, the active pharmacological effects and the underlying mechanisms of ferulic acid against TBI remain...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731527/ https://www.ncbi.nlm.nih.gov/pubmed/36514753 http://dx.doi.org/10.1002/fsn3.3036 |
_version_ | 1784845922348302336 |
---|---|
author | Dong, Qinghua Yang, Shenglin Liao, Huafeng He, Qi Xiao, Junxin |
author_facet | Dong, Qinghua Yang, Shenglin Liao, Huafeng He, Qi Xiao, Junxin |
author_sort | Dong, Qinghua |
collection | PubMed |
description | Traumatic brain injury (TBI) is characterized by cellular damage and inflammation in lesioned brain tissue. Ferulic acid has been shown to have a melioration effect on neurological functions. However, the active pharmacological effects and the underlying mechanisms of ferulic acid against TBI remain unclear. On the basis of network pharmacology and molecular docking methodology, this study aimed to investigate the beneficial effects of ferulic acid in treating TBI, and characterized the detailed biotargets and mechanisms of these actions. The identified core targets were validated via in silico simulation. We identified 91 overlapping targets associated with ferulic acid and TBI. In‐silico simulation analysis validated the putative core targets of tumor protein p53, mitogen‐activated protein kinase (MAPK) 1, and estrogen receptor 1. The Gene Ontology‐enriched annotations and findings were largely associated with cell proliferation, apoptosis, and inflammation in nerve cells. Additional Kyoto Encyclopedia of Genes and Genomes enrichment analysis unmasked the pharmacological pathways of ferulic acid in treating TBI, including the MAPK signaling pathway and hypoxia‐inducible factor‐1 signaling pathway. Bioinformatic analyses and findings provide a new preclinical strategy for revealing the core targets and network pathways of ferulic acid in treating TBI. Moreover, some bioinformatic findings were computationally validated in silico for exhibiting the neuroprotective action of ferulic acid against TBI. |
format | Online Article Text |
id | pubmed-9731527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-97315272022-12-12 Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury Dong, Qinghua Yang, Shenglin Liao, Huafeng He, Qi Xiao, Junxin Food Sci Nutr Original Articles Traumatic brain injury (TBI) is characterized by cellular damage and inflammation in lesioned brain tissue. Ferulic acid has been shown to have a melioration effect on neurological functions. However, the active pharmacological effects and the underlying mechanisms of ferulic acid against TBI remain unclear. On the basis of network pharmacology and molecular docking methodology, this study aimed to investigate the beneficial effects of ferulic acid in treating TBI, and characterized the detailed biotargets and mechanisms of these actions. The identified core targets were validated via in silico simulation. We identified 91 overlapping targets associated with ferulic acid and TBI. In‐silico simulation analysis validated the putative core targets of tumor protein p53, mitogen‐activated protein kinase (MAPK) 1, and estrogen receptor 1. The Gene Ontology‐enriched annotations and findings were largely associated with cell proliferation, apoptosis, and inflammation in nerve cells. Additional Kyoto Encyclopedia of Genes and Genomes enrichment analysis unmasked the pharmacological pathways of ferulic acid in treating TBI, including the MAPK signaling pathway and hypoxia‐inducible factor‐1 signaling pathway. Bioinformatic analyses and findings provide a new preclinical strategy for revealing the core targets and network pathways of ferulic acid in treating TBI. Moreover, some bioinformatic findings were computationally validated in silico for exhibiting the neuroprotective action of ferulic acid against TBI. John Wiley and Sons Inc. 2022-08-26 /pmc/articles/PMC9731527/ /pubmed/36514753 http://dx.doi.org/10.1002/fsn3.3036 Text en © 2022 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Dong, Qinghua Yang, Shenglin Liao, Huafeng He, Qi Xiao, Junxin Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury |
title | Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury |
title_full | Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury |
title_fullStr | Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury |
title_full_unstemmed | Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury |
title_short | Preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury |
title_sort | preclinical findings reveal the pharmacological targets of ferulic acid in the treatment of traumatic brain injury |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731527/ https://www.ncbi.nlm.nih.gov/pubmed/36514753 http://dx.doi.org/10.1002/fsn3.3036 |
work_keys_str_mv | AT dongqinghua preclinicalfindingsrevealthepharmacologicaltargetsofferulicacidinthetreatmentoftraumaticbraininjury AT yangshenglin preclinicalfindingsrevealthepharmacologicaltargetsofferulicacidinthetreatmentoftraumaticbraininjury AT liaohuafeng preclinicalfindingsrevealthepharmacologicaltargetsofferulicacidinthetreatmentoftraumaticbraininjury AT heqi preclinicalfindingsrevealthepharmacologicaltargetsofferulicacidinthetreatmentoftraumaticbraininjury AT xiaojunxin preclinicalfindingsrevealthepharmacologicaltargetsofferulicacidinthetreatmentoftraumaticbraininjury |