Cargando…
Alzheimer's disease classification using cluster‐based labelling for graph neural network on heterogeneous data
Biomarkers for Alzheimer's disease (AD) diagnosis do not always correlate reliably with cognitive symptoms, making clinical diagnosis inconsistent. In this study, the performance of a graphical neural network (GNN) classifier based on data‐driven diagnostic classes from unsupervised clustering...
Autores principales: | McCombe, Niamh, Bamrah, Jake, Sanchez‐Bornot, Jose M., Finn, David P., McClean, Paula L., Wong‐Lin, KongFatt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731537/ https://www.ncbi.nlm.nih.gov/pubmed/36514476 http://dx.doi.org/10.1049/htl2.12037 |
Ejemplares similares
-
Shaping a data-driven era in dementia care pathway through computational neurology approaches
por: Wong-Lin, KongFatt, et al.
Publicado: (2020) -
Integrated space–frequency–time domain feature extraction for MEG-based Alzheimer’s disease classification
por: Yang, Su, et al.
Publicado: (2021) -
Multi-dimensional relationships among dementia, depression and prescribed drugs in England and Wales hospitals
por: Joshi, Alok, et al.
Publicado: (2022) -
Multi‐time‐point data preparation robustly reveals MCI and dementia risk factors
por: Kaur, Daman, et al.
Publicado: (2020) -
Opportunities for multiscale computational modelling of serotonergic drug effects in Alzheimer's disease
por: Joshi, Alok, et al.
Publicado: (2020)