Cargando…

Call to Action: Creating Resources for Radiology Technologists to Capture Higher Quality Portable Chest X-rays

Background Patient rotation, foreign body overlying anatomy, and anatomy out of field of view can have detrimental impacts on the diagnostic quality of portable chest x-rays (PCXRs), especially as the number of PCXR imaging increases due to the coronavirus disease 2019 (COVID-19) pandemic. Although...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Michael X, Gilotra, Kevin, Young, Austin, Gould, Elaine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731552/
https://www.ncbi.nlm.nih.gov/pubmed/36507112
http://dx.doi.org/10.7759/cureus.29197
Descripción
Sumario:Background Patient rotation, foreign body overlying anatomy, and anatomy out of field of view can have detrimental impacts on the diagnostic quality of portable chest x-rays (PCXRs), especially as the number of PCXR imaging increases due to the coronavirus disease 2019 (COVID-19) pandemic. Although preventable, these “quality failures” are common and may lead to interpretative and diagnostic errors for the radiologist. Aims In this study, we present a baseline quality failure rate of PCXR imaging as observed at our institution. We also conduct a focus group highlighting the key issues that lead to the problematic images and discuss potential interventions targeting technologists that can be implemented to address imaging quality failure rate. Materials and methods A total of 500 PCXRs for adult patients admitted to a large university hospital between July 12, 2021, and July 25, 2021, were obtained for evaluation of quality. The PCXRs were evaluated by radiology residents for failures in technical image quality. The images were categorized into various metrics including the degree of rotation and obstruction of anatomical structures. After collecting the data, a focus group involving six managers of the technologist department at our university hospital was conducted to further illuminate the key barriers to quality PCXRs faced at our institution.. Results  Out of the 500 PCXRs evaluated, 231 were problematic (46.2%). 43.5% of the problematic films with a repeat PCXR within one week showed that there was a technical problem impacting the ability to detect pathology. Most problematic films also occurred during the night shift (48%). Key issues that lead to poor image quality included improper patient positioning, foreign objects covering anatomy, and variances in technologists' training. Three interventions were proposed to optimize technologist performance that can lower quality failure rates of PCXRs. These include a longitudinal educational curriculum involving didactic sessions, adding nursing support to assist technologists, and adding an extra layer of verification by internal medicine residents before sending the films to the radiologist. The rationale for these interventions is discussed in detail so that a modified version can be implemented in other hospital systems.  Conclusion This study illustrates the high baseline error rate in image quality of PCXRs at our institution and demonstrates the need to improve on image quality. Poor image quality negatively impacts the interpretive accuracy of radiologists and therefore leads to wrong diagnoses. Increasing educational resources and support for technologists can lead to higher image quality and radiologist accuracy.