Cargando…
Application of back propagation neural network model optimized by particle swarm algorithm in predicting the risk of hypertension
The structure of a back propagation neural network was optimized by a particle swarm optimization (PSO) algorithm, and a back propagation neural network model based on a PSO algorithm was constructed. By comparison with a general back propagation neural network and logistic regression, the fitting p...
Autores principales: | Yan, Yan, Chen, Rong, Yang, Zihua, Ma, Yong, Huang, Jialu, Luo, Ling, Liu, Hao, Xu, Jian, Chen, Weiying, Ding, Yuanlin, Kong, Danli, Zhang, Qiaoli, Yu, Haibing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731601/ https://www.ncbi.nlm.nih.gov/pubmed/36380516 http://dx.doi.org/10.1111/jch.14597 |
Ejemplares similares
-
Particle identification at LHCb: new calibration techniques and machine learning classification algorithms
por: Lucio Martinez, Miriam
Publicado: (2018) -
Deep Convolutional Networks for Event Reconstruction and Particle Tagging on NOvA and DUNE
por: Psihas, Fernanda
Publicado: (2017) -
Yandex and ML
por: Ustyuzhanin, Andrey
Publicado: (2017) -
Nvidia and ML
por: Altoe, Piero
Publicado: (2017) -
Intel and ML
por: Pabst, Hans
Publicado: (2017)