Cargando…

Integrative Serum Metabolic Fingerprints Based Multi‐Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification

Identification of novel non‐invasive biomarkers is critical for the early diagnosis of lung adenocarcinoma (LUAD), especially for the accurate classification of pulmonary nodule. Here, a multiplexed assay is developed on an optimized nanoparticle‐based laser desorption/ionization mass spectrometry p...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lin, Zhang, Mengji, Pan, Xufeng, Zhao, Mingna, Huang, Lin, Hu, Xiaomeng, Wang, Xueqing, Qiao, Lihua, Guo, Qiaomei, Xu, Wanxing, Qian, Wenli, Xue, Tingjia, Ye, Xiaodan, Li, Ming, Su, Haixiang, Kuang, Yinglan, Lu, Xing, Ye, Xin, Qian, Kun, Lou, Jiatao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731719/
https://www.ncbi.nlm.nih.gov/pubmed/36257825
http://dx.doi.org/10.1002/advs.202203786
_version_ 1784845964997033984
author Wang, Lin
Zhang, Mengji
Pan, Xufeng
Zhao, Mingna
Huang, Lin
Hu, Xiaomeng
Wang, Xueqing
Qiao, Lihua
Guo, Qiaomei
Xu, Wanxing
Qian, Wenli
Xue, Tingjia
Ye, Xiaodan
Li, Ming
Su, Haixiang
Kuang, Yinglan
Lu, Xing
Ye, Xin
Qian, Kun
Lou, Jiatao
author_facet Wang, Lin
Zhang, Mengji
Pan, Xufeng
Zhao, Mingna
Huang, Lin
Hu, Xiaomeng
Wang, Xueqing
Qiao, Lihua
Guo, Qiaomei
Xu, Wanxing
Qian, Wenli
Xue, Tingjia
Ye, Xiaodan
Li, Ming
Su, Haixiang
Kuang, Yinglan
Lu, Xing
Ye, Xin
Qian, Kun
Lou, Jiatao
author_sort Wang, Lin
collection PubMed
description Identification of novel non‐invasive biomarkers is critical for the early diagnosis of lung adenocarcinoma (LUAD), especially for the accurate classification of pulmonary nodule. Here, a multiplexed assay is developed on an optimized nanoparticle‐based laser desorption/ionization mass spectrometry platform for the sensitive and selective detection of serum metabolic fingerprints (SMFs). Integrative SMFs based multi‐modal platforms are constructed for the early detection of LUAD and the classification of pulmonary nodule. The dual modal model, metabolic fingerprints with protein tumor marker neural network (MP‐NN), integrating SMFs with protein tumor marker carcinoembryonic antigen (CEA) via deep learning, shows superior performance compared with the single modal model Met‐NN (p < 0.001). Based on MP‐NN, the tri modal model MPI‐RF integrating SMFs, tumor marker CEA, and image features via random forest demonstrates significantly higher performance than the clinical models (Mayo Clinic and Veterans Affairs) and the image artificial intelligence in pulmonary nodule classification (p < 0.001). The developed platforms would be promising tools for LUAD screening and pulmonary nodule management, paving the conceptual and practical foundation for the clinical application of omics tools.
format Online
Article
Text
id pubmed-9731719
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-97317192022-12-12 Integrative Serum Metabolic Fingerprints Based Multi‐Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification Wang, Lin Zhang, Mengji Pan, Xufeng Zhao, Mingna Huang, Lin Hu, Xiaomeng Wang, Xueqing Qiao, Lihua Guo, Qiaomei Xu, Wanxing Qian, Wenli Xue, Tingjia Ye, Xiaodan Li, Ming Su, Haixiang Kuang, Yinglan Lu, Xing Ye, Xin Qian, Kun Lou, Jiatao Adv Sci (Weinh) Research Articles Identification of novel non‐invasive biomarkers is critical for the early diagnosis of lung adenocarcinoma (LUAD), especially for the accurate classification of pulmonary nodule. Here, a multiplexed assay is developed on an optimized nanoparticle‐based laser desorption/ionization mass spectrometry platform for the sensitive and selective detection of serum metabolic fingerprints (SMFs). Integrative SMFs based multi‐modal platforms are constructed for the early detection of LUAD and the classification of pulmonary nodule. The dual modal model, metabolic fingerprints with protein tumor marker neural network (MP‐NN), integrating SMFs with protein tumor marker carcinoembryonic antigen (CEA) via deep learning, shows superior performance compared with the single modal model Met‐NN (p < 0.001). Based on MP‐NN, the tri modal model MPI‐RF integrating SMFs, tumor marker CEA, and image features via random forest demonstrates significantly higher performance than the clinical models (Mayo Clinic and Veterans Affairs) and the image artificial intelligence in pulmonary nodule classification (p < 0.001). The developed platforms would be promising tools for LUAD screening and pulmonary nodule management, paving the conceptual and practical foundation for the clinical application of omics tools. John Wiley and Sons Inc. 2022-10-18 /pmc/articles/PMC9731719/ /pubmed/36257825 http://dx.doi.org/10.1002/advs.202203786 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wang, Lin
Zhang, Mengji
Pan, Xufeng
Zhao, Mingna
Huang, Lin
Hu, Xiaomeng
Wang, Xueqing
Qiao, Lihua
Guo, Qiaomei
Xu, Wanxing
Qian, Wenli
Xue, Tingjia
Ye, Xiaodan
Li, Ming
Su, Haixiang
Kuang, Yinglan
Lu, Xing
Ye, Xin
Qian, Kun
Lou, Jiatao
Integrative Serum Metabolic Fingerprints Based Multi‐Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification
title Integrative Serum Metabolic Fingerprints Based Multi‐Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification
title_full Integrative Serum Metabolic Fingerprints Based Multi‐Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification
title_fullStr Integrative Serum Metabolic Fingerprints Based Multi‐Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification
title_full_unstemmed Integrative Serum Metabolic Fingerprints Based Multi‐Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification
title_short Integrative Serum Metabolic Fingerprints Based Multi‐Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification
title_sort integrative serum metabolic fingerprints based multi‐modal platforms for lung adenocarcinoma early detection and pulmonary nodule classification
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731719/
https://www.ncbi.nlm.nih.gov/pubmed/36257825
http://dx.doi.org/10.1002/advs.202203786
work_keys_str_mv AT wanglin integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT zhangmengji integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT panxufeng integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT zhaomingna integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT huanglin integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT huxiaomeng integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT wangxueqing integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT qiaolihua integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT guoqiaomei integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT xuwanxing integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT qianwenli integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT xuetingjia integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT yexiaodan integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT liming integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT suhaixiang integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT kuangyinglan integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT luxing integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT yexin integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT qiankun integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification
AT loujiatao integrativeserummetabolicfingerprintsbasedmultimodalplatformsforlungadenocarcinomaearlydetectionandpulmonarynoduleclassification