Cargando…

Export of polybasic motif–containing secretory proteins BMP8A and SFRP1 from the endoplasmic reticulum is regulated by surfeit locus protein 4

In the conventional secretory pathway, cargo receptors play important roles in exporting newly synthesized secretory proteins from the endoplasmic reticulum (ER). We previously showed that a cargo receptor, surfeit locus protein 4 (SURF4), promotes ER export of a soluble signaling molecule, sonic he...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Xiao, Wang, Tingxuan, Guo, Yusong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731852/
https://www.ncbi.nlm.nih.gov/pubmed/36370847
http://dx.doi.org/10.1016/j.jbc.2022.102687
Descripción
Sumario:In the conventional secretory pathway, cargo receptors play important roles in exporting newly synthesized secretory proteins from the endoplasmic reticulum (ER). We previously showed that a cargo receptor, surfeit locus protein 4 (SURF4), promotes ER export of a soluble signaling molecule, sonic hedgehog, via recognizing the polybasic residues within its Cardin–Weintraub motif. In addition to sonic hedgehog, we found 30 more secretory proteins containing the polybasic motif (K/R)(K/R)(K/R)XX(K/R)(K/R), but whether SURF4 plays a general role in mediating ER export of these secretory proteins is unclear. Here, we analyzed the trafficking of four of these secretory proteins: desert hedgehog, Indian hedgehog, bone morphogenetic protein 8A (BMP8A), and secreted frizzled-related protein 1 (SFRP1). We found that the polybasic motifs contained in these cargo proteins are important for their ER export. Further analyses indicated that the polybasic motifs of BMP8A and SFRP1 interact with the triacidic motif on the predicted first luminal domain of SURF4. These interactions with SURF4 are essential and sufficient for the ER-to-Golgi trafficking of BMP8A and SFRP1. Moreover, we demonstrated that SURF4 localizes at a subpopulation of ER exit sites to regulate the ER export of its clients. Taken together, these results suggest that SURF4 is recruited to specific ER exit sites and plays a general role in capturing polybasic motif–containing secretory cargo proteins through electrostatic interactions.