Cargando…
Machine learning in neuroimaging: from research to clinical practice
Neuroimaging is critical in clinical care and research, enabling us to investigate the brain in health and disease. There is a complex link between the brain’s morphological structure, physiological architecture, and the corresponding imaging characteristics. The shape, function, and relationships b...
Autores principales: | Nenning, Karl-Heinz, Langs, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Medizin
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732070/ https://www.ncbi.nlm.nih.gov/pubmed/36044070 http://dx.doi.org/10.1007/s00117-022-01051-1 |
Ejemplares similares
-
Unsupervised machine learning identifies predictive progression markers of IPF
por: Pan, Jeanny, et al.
Publicado: (2022) -
How machine learning is shaping cognitive neuroimaging
por: Varoquaux, Gael, et al.
Publicado: (2014) -
Machine learning: from radiomics to discovery and routine
por: Langs, G., et al.
Publicado: (2018) -
Machine learning for neuroimaging with scikit-learn
por: Abraham, Alexandre, et al.
Publicado: (2014) -
Editorial: Machine Learning in Neuroimaging
por: Federau, Christian, et al.
Publicado: (2021)