Cargando…
Traffic speed prediction techniques in urban environments
The present study developed Multiple Linear Regression (MLR) and machine learning (ML) models, including Artificial Neural Network (ANN), Support Vector Machine (SVM), and Random Forest (RF), to predict the mean free-flow speed (FFS) using several geometric, traffic, and pavement condition variables...
Autores principales: | Alomari, Ahmad H., Khedaywi, Taisir S., Marian, Abdel Rahman O., Jadah, Asalah A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732136/ https://www.ncbi.nlm.nih.gov/pubmed/36506368 http://dx.doi.org/10.1016/j.heliyon.2022.e11847 |
Ejemplares similares
-
Speeding the traffic on grids
por: Port, O
Publicado: (2002) -
Modeling and Characterization of Traffic Flows in Urban Environments
por: Zambrano-Martinez, Jorge Luis, et al.
Publicado: (2018) -
Traffic Speed Prediction: An Attention-Based Method
por: Liu, Duanyang, et al.
Publicado: (2019) -
Assessment of honking impact on traffic noise in urban traffic environment of Nagpur, India
por: Vijay, Ritesh, et al.
Publicado: (2015) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021)