Cargando…
Predicting 180-day mortality for women with ovarian cancer using machine learning and patient-reported outcome data
Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using p...
Autores principales: | Sidey-Gibbons, Chris J., Sun, Charlotte, Schneider, Amy, Lu, Sheng-Chieh, Lu, Karen, Wright, Alexi, Meyer, Larissa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732183/ https://www.ncbi.nlm.nih.gov/pubmed/36481644 http://dx.doi.org/10.1038/s41598-022-22614-1 |
Ejemplares similares
-
Machine learning models for 180-day mortality prediction of patients with advanced cancer using patient-reported symptom data
por: Xu, Cai, et al.
Publicado: (2022) -
Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison
por: Pfob, André, et al.
Publicado: (2022) -
Machine Learning–Based Short-Term Mortality Prediction Models for Patients With Cancer Using Electronic Health Record Data: Systematic Review and Critical Appraisal
por: Lu, Sheng-Chieh, et al.
Publicado: (2022) -
On the importance of interpretable machine learning predictions to inform clinical decision making in oncology
por: Lu, Sheng-Chieh, et al.
Publicado: (2023) -
Machine learning in medicine: a practical introduction
por: Sidey-Gibbons, Jenni A. M., et al.
Publicado: (2019)