Cargando…
Temporal convolutional networks and data rebalancing for clinical length of stay and mortality prediction
It is critical for hospitals to accurately predict patient length of stay (LOS) and mortality in real-time. We evaluate temporal convolutional networks (TCNs) and data rebalancing methods to predict LOS and mortality. This is a retrospective cohort study utilizing the MIMIC-III database. The MIMIC-E...
Autores principales: | Bednarski, Bryan P., Singh, Akash Deep, Zhang, Wenhao, Jones, William M., Naeim, Arash, Ramezani, Ramin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732283/ https://www.ncbi.nlm.nih.gov/pubmed/36481828 http://dx.doi.org/10.1038/s41598-022-25472-z |
Ejemplares similares
-
On collaborative reinforcement learning to optimize the redistribution of critical medical supplies throughout the COVID-19 pandemic
por: Bednarski, Bryan P, et al.
Publicado: (2020) -
Convolutional Rebalancing Network for the Classification of Large Imbalanced Rice Pest and Disease Datasets in the Field
por: Yang, Guofeng, et al.
Publicado: (2021) -
Rebalancing Society
por: Mintzberg, Henry
Publicado: (2015) -
Remote Monitoring of Patients With Hematologic Malignancies at High Risk of Febrile Neutropenia: Exploratory Study
por: Kroloff, Maxwell, et al.
Publicado: (2022) -
Developing a Smartwatch-Based Healthcare Application: Notes to Consider
por: Ramezani, Ramin, et al.
Publicado: (2023)