Cargando…
Prediction of ground-level ozone by SOM-NARX hybrid neural network based on the correlation of predictors
Current approaches to ozone prediction using hybrid neural networks are numerous but not perfect. Decomposition algorithms ignore the correlation between predictors and ozone, and feature extraction methods rarely select appropriate predictors in terms of correlation, especially for VOCs. Therefore,...
Autores principales: | Xiong, Qinqing, Wang, Wenju, Wang, Mingya, Zhang, Chunhui, Zhang, Xuechun, Chen, Chun, Wang, Mingshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732375/ https://www.ncbi.nlm.nih.gov/pubmed/36505938 http://dx.doi.org/10.1016/j.isci.2022.105658 |
Ejemplares similares
-
Temperature prediction of solar greenhouse based on NARX regression neural network
por: Gao, Maosheng, et al.
Publicado: (2023) -
Difference Analysis of Regional Economic Development Based on the SOM Neural Network with the Hybrid Genetic Algorithm
por: Cai, Ying, et al.
Publicado: (2021) -
A Hybrid Visual Tracking Algorithm Based on SOM Network and Correlation Filter
por: Zhang, Yuanping, et al.
Publicado: (2021) -
Individual modelling of haematotoxicity with NARX neural networks: A knowledge transfer approach()()()()
por: Steinacker, Marie, et al.
Publicado: (2023) -
Prediction of Biceps Muscle Electromyogram Signal Using a NARX Neural Network
por: Khodadadi, Vahid, et al.
Publicado: (2023)