Cargando…

Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function

The gut microbiota influences host brain function, but the underlying gut-brain axis connections and molecular processes remain unclear. One pathway along this bidirectional communication system involves circulating microbially derived metabolites, such as short-chain fatty acids (SCFAs), which incl...

Descripción completa

Detalles Bibliográficos
Autores principales: Knox, Emily G., Aburto, Maria R., Tessier, Carmen, Nagpal, Jatin, Clarke, Gerard, O’Driscoll, Caitriona M., Cryan, John F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732410/
https://www.ncbi.nlm.nih.gov/pubmed/36505934
http://dx.doi.org/10.1016/j.isci.2022.105648
_version_ 1784846127199158272
author Knox, Emily G.
Aburto, Maria R.
Tessier, Carmen
Nagpal, Jatin
Clarke, Gerard
O’Driscoll, Caitriona M.
Cryan, John F.
author_facet Knox, Emily G.
Aburto, Maria R.
Tessier, Carmen
Nagpal, Jatin
Clarke, Gerard
O’Driscoll, Caitriona M.
Cryan, John F.
author_sort Knox, Emily G.
collection PubMed
description The gut microbiota influences host brain function, but the underlying gut-brain axis connections and molecular processes remain unclear. One pathway along this bidirectional communication system involves circulating microbially derived metabolites, such as short-chain fatty acids (SCFAs), which include butyrate and propionate. Brain endothelium is the main interface of communication between circulating signals and the brain, and it constitutes the main component of the blood-brain barrier (BBB). Here, we used a well-established in vitro BBB model treated with physiologically relevant concentrations of butyrate and propionate with and without lipopolysaccharide (LPS) to examine the effects of SCFAs on the actin cytoskeleton and tight junction protein structure. Both SCFAs induced distinct alterations to filamentous actin directionality. SCFAs also increased tight junction protein spikes and protected from LPS-induced tight-junction mis-localization, improved BBB integrity, and modulated mitochondrial network dynamics. These findings identify the actin cytoskeletal dynamics as another target further illuminating how SCFAs can influence BBB physiology.
format Online
Article
Text
id pubmed-9732410
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97324102022-12-10 Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function Knox, Emily G. Aburto, Maria R. Tessier, Carmen Nagpal, Jatin Clarke, Gerard O’Driscoll, Caitriona M. Cryan, John F. iScience Article The gut microbiota influences host brain function, but the underlying gut-brain axis connections and molecular processes remain unclear. One pathway along this bidirectional communication system involves circulating microbially derived metabolites, such as short-chain fatty acids (SCFAs), which include butyrate and propionate. Brain endothelium is the main interface of communication between circulating signals and the brain, and it constitutes the main component of the blood-brain barrier (BBB). Here, we used a well-established in vitro BBB model treated with physiologically relevant concentrations of butyrate and propionate with and without lipopolysaccharide (LPS) to examine the effects of SCFAs on the actin cytoskeleton and tight junction protein structure. Both SCFAs induced distinct alterations to filamentous actin directionality. SCFAs also increased tight junction protein spikes and protected from LPS-induced tight-junction mis-localization, improved BBB integrity, and modulated mitochondrial network dynamics. These findings identify the actin cytoskeletal dynamics as another target further illuminating how SCFAs can influence BBB physiology. Elsevier 2022-11-23 /pmc/articles/PMC9732410/ /pubmed/36505934 http://dx.doi.org/10.1016/j.isci.2022.105648 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Knox, Emily G.
Aburto, Maria R.
Tessier, Carmen
Nagpal, Jatin
Clarke, Gerard
O’Driscoll, Caitriona M.
Cryan, John F.
Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function
title Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function
title_full Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function
title_fullStr Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function
title_full_unstemmed Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function
title_short Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function
title_sort microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732410/
https://www.ncbi.nlm.nih.gov/pubmed/36505934
http://dx.doi.org/10.1016/j.isci.2022.105648
work_keys_str_mv AT knoxemilyg microbialderivedmetabolitesinduceactincytoskeletalrearrangementandprotectbloodbrainbarrierfunction
AT aburtomariar microbialderivedmetabolitesinduceactincytoskeletalrearrangementandprotectbloodbrainbarrierfunction
AT tessiercarmen microbialderivedmetabolitesinduceactincytoskeletalrearrangementandprotectbloodbrainbarrierfunction
AT nagpaljatin microbialderivedmetabolitesinduceactincytoskeletalrearrangementandprotectbloodbrainbarrierfunction
AT clarkegerard microbialderivedmetabolitesinduceactincytoskeletalrearrangementandprotectbloodbrainbarrierfunction
AT odriscollcaitrionam microbialderivedmetabolitesinduceactincytoskeletalrearrangementandprotectbloodbrainbarrierfunction
AT cryanjohnf microbialderivedmetabolitesinduceactincytoskeletalrearrangementandprotectbloodbrainbarrierfunction