Cargando…
Prediction of manifest refraction using machine learning ensemble models on wavefront aberrometry data
PURPOSE: To assess the performance of machine learning (ML) ensemble models for predicting patient subjective refraction (SR) using demographic factors, wavefront aberrometry data, and measurement quality related metrics taken with a low-cost portable autorefractor. METHODS: Four ensemble models wer...
Autores principales: | Hernández, Carlos S., Gil, Andrea, Casares, Ignacio, Poderoso, Jesús, Wehse, Alec, Dave, Shivang R., Lim, Daryl, Sánchez-Montañés, Manuel, Lage, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732475/ https://www.ncbi.nlm.nih.gov/pubmed/35431181 http://dx.doi.org/10.1016/j.optom.2022.03.001 |
Ejemplares similares
-
Commentary: Wavefront aberrometry-based objective refraction – Accuracy versus convenience?
por: Chauhan, Tulika, et al.
Publicado: (2022) -
Assesment of the QuickSee wavefront autorefractor for characterizing refractive errors in school-age children
por: Gil, Andrea, et al.
Publicado: (2020) -
Correction: Assesment of the QuickSee wavefront autorefractor for characterizing refractive errors in school-age children
por: Gil, Andrea, et al.
Publicado: (2022) -
Deep Ensemble Learning for Retinal Image Classification
por: Ho, Edward, et al.
Publicado: (2022) -
Semantic relational machine learning model for sentiment analysis using cascade feature selection and heterogeneous classifier ensemble
por: Yenkikar, Anuradha, et al.
Publicado: (2022)