Cargando…
Suspect glaucoma detection from corneal densitometry supported by machine learning
PURPOSE: To discriminate suspect glaucomatous from control eyes using corneal densitometry based on the statistical modeling of the pixel intensity distribution of Scheimpflug images. METHODS: Twenty-four participants (10 suspect glaucomatous and 14 control eyes) were included in this retrospective...
Autores principales: | García-Jiménez, Andrés, Consejo, Alejandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732483/ https://www.ncbi.nlm.nih.gov/pubmed/36210294 http://dx.doi.org/10.1016/j.optom.2022.09.002 |
Ejemplares similares
-
Can Glaucoma Suspect Data Help to Improve the Performance of Glaucoma Diagnosis?
por: Abbasi, Ashkan, et al.
Publicado: (2023) -
Influence of eye tilt on corneal densitometry
por: Consejo, Alejandra, et al.
Publicado: (2022) -
Detection of Subclinical Keratoconus With a Validated Alternative Method to Corneal Densitometry
por: Consejo, Alejandra, et al.
Publicado: (2021) -
Anomaly detection for blueberry data using sparse autoencoder-support vector machine
por: Wei, Dianwen, et al.
Publicado: (2023) -
Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma
por: Thiéry, Alexandre H., et al.
Publicado: (2023)