Cargando…

Neuroanatomical correlates of individual differences in the object choice task in chimpanzees (Pan troglodytes)

Declarative and imperative joint attention or joint engagement are important milestones in human infant development. These have been shown to be a significant predictor of later language development and are impaired in some individuals with, or at risk for, a diagnosis of autism spectrum disorder. C...

Descripción completa

Detalles Bibliográficos
Autores principales: Hopkins, William D., Mulholland, Michele M., Mareno, Mary Catherine, Webb, Sarah J. Neal, Schapiro, Steven J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732552/
https://www.ncbi.nlm.nih.gov/pubmed/36507015
http://dx.doi.org/10.3389/fpsyg.2022.1057722
Descripción
Sumario:Declarative and imperative joint attention or joint engagement are important milestones in human infant development. These have been shown to be a significant predictor of later language development and are impaired in some individuals with, or at risk for, a diagnosis of autism spectrum disorder. Comparatively, while chimpanzees and other great apes have been reported to engage in imperative joint attention, evidence of declarative joint attention remains unclear based on existing studies. Some have suggested that differences in methods of assessing joint attention may have an influence on performance in nonhuman primates. Here, we report data on a measure of receptive joint attention (object choice task) in a sample of captive chimpanzees. Chimpanzees, as a group, performed significantly better than chance. By contrast, when considering individual performance, there was no significant difference in the number of those who passed and those who failed. Using quantitative genetic analyses, we found that performance on the object choice task was not significantly heritable nor were there any significant effects of sex, rearing history, or colony. Lastly, we found significant differences in gray matter covariation, between those who passed or failed the task. Those who passed contributed more to gray matter covariation in several brain regions within the social brain network, consistent with hypotheses regarding the importance of these regions in human and nonhuman primate social cognition.