Cargando…
Optimization of deep learning models for the prediction of gene mutations using unsupervised clustering
Deep learning models are increasingly being used to interpret whole‐slide images (WSIs) in digital pathology and to predict genetic mutations. Currently, it is commonly assumed that tumor regions have most of the predictive power. However, it is reasonable to assume that other tissues from the tumor...
Autores principales: | Chen, Zihan, Li, Xingyu, Yang, Miaomiao, Zhang, Hong, Xu, Xu Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732687/ https://www.ncbi.nlm.nih.gov/pubmed/36376239 http://dx.doi.org/10.1002/cjp2.302 |
Ejemplares similares
-
DeLUCS: Deep learning for unsupervised clustering of DNA sequences
por: Millán Arias, Pablo, et al.
Publicado: (2022) -
Clustering on Human Microbiome Sequencing Data: A Distance-Based Unsupervised Learning Model
por: Yang, Dongyang, et al.
Publicado: (2020) -
The application of unsupervised deep learning in predictive models using electronic health records
por: Wang, Lei, et al.
Publicado: (2020) -
Over-optimism in unsupervised microbiome analysis: Insights from network learning and clustering
por: Ullmann, Theresa, et al.
Publicado: (2023) -
Scalable Unsupervised Learning for Deep Discrete Generative Models
por: Guiraud, Enrico
Publicado: (2021)