Cargando…

TFIIH moonlighting at telomeres

Although telomeres are essential for chromosome stability, they represent fragile structures in our genome. Telomere shortening occurs during aging in cells lacking telomerase due to the end replication problem. In addition, recent work uncovered that the bulk of telomeric DNA poses severe hurdles f...

Descripción completa

Detalles Bibliográficos
Autores principales: Glousker, Galina, Lingner, Joachim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732908/
https://www.ncbi.nlm.nih.gov/pubmed/36347559
http://dx.doi.org/10.1101/gad.350140.122
Descripción
Sumario:Although telomeres are essential for chromosome stability, they represent fragile structures in our genome. Telomere shortening occurs during aging in cells lacking telomerase due to the end replication problem. In addition, recent work uncovered that the bulk of telomeric DNA poses severe hurdles for the semiconservative DNA replication machinery, requiring the assistance of an increasing number of specialized factors that prevent accidental telomere loss or damage events. In this issue of Genes & Development, Yang and colleagues (pp. 956–969) discover that TFIIH, a basic component of the PolII transcription initiation and nucleotide excision repair machinery, facilitates telomere replication. TFIIH is recruited to telomeres by the shelterin component TRF1, taking on at telomeres a moonlighting function.