Cargando…
Pattern recognition of topologically associating domains using deep learning
BACKGROUND: Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conser...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732975/ https://www.ncbi.nlm.nih.gov/pubmed/36482308 http://dx.doi.org/10.1186/s12859-022-05075-1 |
Sumario: | BACKGROUND: Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines? RESULTS: To address the above question, we propose a novel task—TAD recognition—as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation. CONCLUSIONS: TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-022-05075-1. |
---|