Cargando…
Automatic identifying and counting blood cells in smear images by using single shot detector and Taguchi method
BACKGROUND: Researchers have tried to identify and count different blood cells in microscopic smear images by using deep learning methods of artificial intelligence to solve the highly time-consuming problem. RESULTS: The three types of blood cells are platelets, red blood cells, and white blood cel...
Autores principales: | Chen, Yao-Mei, Tsai, Jinn-Tsong, Ho, Wen-Hsien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732976/ https://www.ncbi.nlm.nih.gov/pubmed/36482316 http://dx.doi.org/10.1186/s12859-022-05074-2 |
Ejemplares similares
-
Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method
por: Chen, Yao-Mei, et al.
Publicado: (2022) -
Automatic Detection and Counting of Blood Cells in Smear Images Using RetinaNet
por: Drałus, Grzegorz, et al.
Publicado: (2021) -
Automatic breast carcinoma detection in histopathological micrographs based on Single Shot Multibox Detector
por: Yamaguchi, Mio, et al.
Publicado: (2022) -
Single Shot Multibox Detector Automatic Polyp Detection Network Based on Gastrointestinal Endoscopic Images
por: Chen, Xiaoling, et al.
Publicado: (2021) -
Classification of age-related macular degeneration using convolutional-neural-network-based transfer learning
por: Chen, Yao-Mei, et al.
Publicado: (2021)