Cargando…
Drug response prediction using graph representation learning and Laplacian feature selection
BACKGROUND: Knowing the responses of a patient to drugs is essential to make personalized medicine practical. Since the current clinical drug response experiments are time-consuming and expensive, utilizing human genomic information and drug molecular characteristics to predict drug responses is of...
Autores principales: | Xie, Minzhu, Lei, Xiaowen, Zhong, Jianchen, Ouyang, Jianxing, Li, Guijing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733001/ https://www.ncbi.nlm.nih.gov/pubmed/36494630 http://dx.doi.org/10.1186/s12859-022-05080-4 |
Ejemplares similares
-
Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
por: Shang, Yilun
Publicado: (2015) -
On the Laplacian spectral radii of Halin graphs
por: Jia, Huicai, et al.
Publicado: (2017) -
Laplacian mixture modeling for network analysis and unsupervised learning on graphs
por: Korenblum, Daniel
Publicado: (2018) -
A truncated nuclear norm and graph-Laplacian regularized low-rank representation method for tumor clustering and gene selection
por: Liu, Qi
Publicado: (2022) -
Graph-representation of oxidative folding pathways
por: Ágoston, Vilmos, et al.
Publicado: (2005)