Cargando…
CRAG: de novo characterization of cell-free DNA fragmentation hotspots in plasma whole-genome sequencing
The fine-scale cell-free DNA fragmentation patterns in early-stage cancers are poorly understood. We developed a de novo approach to characterize the cell-free DNA fragmentation hotspots from plasma whole-genome sequencing. Hotspots are enriched in open chromatin regions, and, interestingly, 3′end o...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733064/ https://www.ncbi.nlm.nih.gov/pubmed/36482487 http://dx.doi.org/10.1186/s13073-022-01141-8 |
Sumario: | The fine-scale cell-free DNA fragmentation patterns in early-stage cancers are poorly understood. We developed a de novo approach to characterize the cell-free DNA fragmentation hotspots from plasma whole-genome sequencing. Hotspots are enriched in open chromatin regions, and, interestingly, 3′end of transposons. Hotspots showed global hypo-fragmentation in early-stage liver cancers and are associated with genes involved in the initiation of hepatocellular carcinoma and associated with cancer stem cells. The hotspots varied across multiple early-stage cancers and demonstrated high performance for the diagnosis and identification of tissue-of-origin in early-stage cancers. We further validated the performance with a small number of independent case–control-matched early-stage cancer samples. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-022-01141-8. |
---|