Cargando…

Automated classification of time-activity-location patterns for improved estimation of personal exposure to air pollution

BACKGROUND: Air pollution epidemiology has primarily relied on measurements from fixed outdoor air quality monitoring stations to derive population-scale exposure. Characterisation of individual time-activity-location patterns is critical for accurate estimations of personal exposure and dose becaus...

Descripción completa

Detalles Bibliográficos
Autores principales: Chatzidiakou, Lia, Krause, Anika, Kellaway, Mike, Han, Yiqun, Li, Yilin, Martin, Elizabeth, Kelly, Frank J., Zhu, Tong, Barratt, Benjamin, Jones, Roderic L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733291/
https://www.ncbi.nlm.nih.gov/pubmed/36482402
http://dx.doi.org/10.1186/s12940-022-00939-8
Descripción
Sumario:BACKGROUND: Air pollution epidemiology has primarily relied on measurements from fixed outdoor air quality monitoring stations to derive population-scale exposure. Characterisation of individual time-activity-location patterns is critical for accurate estimations of personal exposure and dose because pollutant concentrations and inhalation rates vary significantly by location and activity. METHODS: We developed and evaluated an automated model to classify major exposure-related microenvironments (home, work, other static, in-transit) and separated them into indoor and outdoor locations, sleeping activity and five modes of transport (walking, cycling, car, bus, metro/train) with multidisciplinary methods from the fields of movement ecology and artificial intelligence. As input parameters, we used GPS coordinates, accelerometry, and noise, collected at 1 min intervals with a validated Personal Air quality Monitor (PAM) carried by 35 volunteers for one week each. The model classifications were then evaluated against manual time-activity logs kept by participants. RESULTS: Overall, the model performed reliably in classifying home, work, and other indoor microenvironments (F1-score>0.70) but only moderately well for sleeping and visits to outdoor microenvironments (F1-score=0.57 and 0.3 respectively). Random forest approaches performed very well in classifying modes of transport (F1-score>0.91). We found that the performance of the automated methods significantly surpassed those of manual logs. CONCLUSIONS: Automated models for time-activity classification can markedly improve exposure metrics. Such models can be developed in many programming languages, and if well formulated can have general applicability in large-scale health studies, providing a comprehensive picture of environmental health risks during daily life with readily gathered parameters from smartphone technologies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12940-022-00939-8.