Cargando…

Measurement of tissue oxygen saturation during arthroscopic surgery of knee with a tourniquet

BACKGROUND: Tourniquets provide better tissue visibility during arthroscopic surgery. However, multiple postoperative adverse events associated with ischemia may be caused by excessive inflation pressure and duration. We aimed to evaluate the degree of tourniquet-induced ischemia using a noninvasive...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Ning, Cui, Mengxue, Shi, Yongyong, Liu, Zitao, Li, Xiangyu, Chen, Yansheng, Zhao, Gaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733324/
https://www.ncbi.nlm.nih.gov/pubmed/36494737
http://dx.doi.org/10.1186/s13018-022-03431-8
Descripción
Sumario:BACKGROUND: Tourniquets provide better tissue visibility during arthroscopic surgery. However, multiple postoperative adverse events associated with ischemia may be caused by excessive inflation pressure and duration. We aimed to evaluate the degree of tourniquet-induced ischemia using a noninvasive continuous real-time monitoring method and the relationship between changes in tissue oxygen saturation (StO2) and blood biochemical markers of ischemic injuries in patients undergoing arthroscopic knee surgery. METHODS: This was a prospective observational study using near-infrared spectroscopy (NIRS). Data were collected from 29 consecutive patients who underwent arthroscopic procedures. Twenty-five patients underwent anterior cruciate ligament reconstruction, and four underwent meniscal repair. We investigated tourniquet‐induced changes in StO2, monitored using NIRS, and blood biochemical markers of ischemic injuries. RESULTS: A significant decrease in the mean StO2 from the baseline was observed during tourniquet inflation in the operative legs. The average decrease in the mean StO2 was 58%. A comparison of mean StO2 between the nonoperative and operative legs before tourniquet deflation showed that mean values of StO2 in the operative legs were significantly lower than those in the nonoperative legs. No significant clinical relationships were observed between changes in StO2 and blood biochemical markers of ischemic injuries (creatine kinase) (p = 0.04, r = 0.38) or tourniquet duration (p = 0.05, r = 0.366). CONCLUSIONS: Our results demonstrated that StO2 could be used to evaluate tissue perfusion in real time but did not support the hypothesis that StO2 is a useful method for predicting the degree of tourniquet-induced injury during arthroscopic knee surgery.