Cargando…
Comparing artificial neural network training algorithms to predict length of stay in hospitalized patients with COVID-19
BACKGROUND: The exponential spread of coronavirus disease 2019 (COVID-19) causes unexpected economic burdens to worldwide health systems with severe shortages in hospital resources (beds, staff, equipment). Managing patients’ length of stay (LOS) to optimize clinical care and utilization of hospital...
Autores principales: | Orooji, Azam, Shanbehzadeh, Mostafa, Mirbagheri, Esmat, Kazemi-Arpanahi, Hadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733380/ https://www.ncbi.nlm.nih.gov/pubmed/36494613 http://dx.doi.org/10.1186/s12879-022-07921-2 |
Ejemplares similares
-
Data integration in cardiac electrophysiology ablation toward achieving proper interoperability in health information systems
por: Kazemi-Arpanahi, Hadi, et al.
Publicado: (2020) -
Developing an artificial neural network for detecting COVID-19 disease
por: Shanbehzadeh, Mostafa, et al.
Publicado: (2022) -
Performance evaluation of selected machine learning algorithms for COVID-19 prediction using routine clinical data: With versus Without CT scan features
por: Shanbehzadeh, Mostafa, et al.
Publicado: (2021) -
Design of an artificial neural network to predict mortality among COVID-19 patients
por: Shanbehzadeh, Mostafa, et al.
Publicado: (2022) -
Predicting hospital readmission risk in patients with COVID-19: A machine learning approach
por: Afrash, Mohammad Reza, et al.
Publicado: (2022)