Cargando…
Deep learning tomographic reconstruction through hierarchical decomposition of domain transforms
Deep learning (DL) has shown unprecedented performance for many image analysis and image enhancement tasks. Yet, solving large-scale inverse problems like tomographic reconstruction remains challenging for DL. These problems involve non-local and space-variant integral transforms between the input a...
Autores principales: | Fu, Lin, De Man, Bruno |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733764/ https://www.ncbi.nlm.nih.gov/pubmed/36484980 http://dx.doi.org/10.1186/s42492-022-00127-y |
Ejemplares similares
-
Deep-learning-based ring artifact correction for tomographic reconstruction
por: Fu, Tianyu, et al.
Publicado: (2023) -
Multi-domain integrative Swin transformer network for sparse-view tomographic reconstruction
por: Pan, Jiayi, et al.
Publicado: (2022) -
HIDEN: Hierarchical decomposition of regulatory networks
por: Gülsoy, Günhan, et al.
Publicado: (2012) -
Epileptic seizure prediction using successive variational mode decomposition and transformers deep learning network
por: Wu, Xiao, et al.
Publicado: (2022) -
On Hallucinations in Tomographic Image Reconstruction
por: Bhadra, Sayantan, et al.
Publicado: (2021)