Cargando…
Effectively computing transition patterns with privacy-preserved trajectory datasets
Recent advances in positioning techniques, along with the widespread use of mobile devices, make it easier to monitor and collect user trajectory information during their daily activities. An ever-growing abundance of data about trajectories of individual users paves the way for various applications...
Autores principales: | Kim, Jong Wook, Jang, Beakcheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733873/ https://www.ncbi.nlm.nih.gov/pubmed/36490250 http://dx.doi.org/10.1371/journal.pone.0278744 |
Ejemplares similares
-
Privacy-preserving aggregation of personal health data streams
por: Kim, Jong Wook, et al.
Publicado: (2018) -
Estimating parameters for probabilistic linkage of privacy-preserved datasets
por: Brown, Adrian P., et al.
Publicado: (2017) -
Privacy-Preserving Indoor Trajectory Matching with IoT Devices
por: Lu, Bingxian, et al.
Publicado: (2023) -
Privacy‐preserving quality control of neuroimaging datasets in federated environments
por: Saha, Debbrata K., et al.
Publicado: (2022) -
Privacy-preserving GWAS analysis on federated genomic datasets
por: Constable, Scott D, et al.
Publicado: (2015)