Cargando…
Framework for Bidirectional Knowledge-Based Maintenance of Wind Turbines
Artificial intelligence (AI) techniques, such as machine learning (ML), are being developed and applied for the monitoring, tracking, and fault diagnosis of wind turbines. Current prediction systems are largely limited by their inherent disadvantages for wind turbines. For example, frequency or vibr...
Autores principales: | Vives, Javier, Palaci, Juan, Heart, Janverly |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733991/ https://www.ncbi.nlm.nih.gov/pubmed/36507231 http://dx.doi.org/10.1155/2022/1020400 |
Ejemplares similares
-
Vibration Analysis for Fault Detection of Wind Turbines by Combining Machine-Learning Techniques and 3D Scanning Laser
por: Vives, Javier, et al.
Publicado: (2022) -
Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine
por: Yeh, Chia-Hung, et al.
Publicado: (2019) -
An Ensemble Learning Solution for Predictive Maintenance of Wind Turbines Main Bearing
por: Beretta, Mattia, et al.
Publicado: (2021) -
Simulation of vorticity wind turbines
por: Sassi, Paolo, et al.
Publicado: (2020) -
Wind-Turbine and Wind-Farm Flows: A Review
por: Porté-Agel, Fernando, et al.
Publicado: (2019)