Cargando…
A Multifaceted benchmarking of synthetic electronic health record generation models
Synthetic health data have the potential to mitigate privacy concerns in supporting biomedical research and healthcare applications. Modern approaches for data generation continue to evolve and demonstrate remarkable potential. Yet there is a lack of a systematic assessment framework to benchmark me...
Autores principales: | Yan, Chao, Yan, Yao, Wan, Zhiyu, Zhang, Ziqi, Omberg, Larsson, Guinney, Justin, Mooney, Sean D., Malin, Bradley A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734113/ https://www.ncbi.nlm.nih.gov/pubmed/36494374 http://dx.doi.org/10.1038/s41467-022-35295-1 |
Ejemplares similares
-
Synthetic electronic health records generated with variational graph autoencoders
por: Nikolentzos, Giannis, et al.
Publicado: (2023) -
Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records
por: Li, Thomas, et al.
Publicado: (2018) -
Bio-inspired benchmark generator for extracellular multi-unit recordings
por: Mondragón-González, Sirenia Lizbeth, et al.
Publicado: (2017) -
Synthea: An approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record
por: Walonoski, Jason, et al.
Publicado: (2018) -
A Continuously Benchmarked and Crowdsourced Challenge for Rapid Development and Evaluation of Models to Predict COVID-19 Diagnosis and Hospitalization
por: Yan, Yao, et al.
Publicado: (2021)