Cargando…
Unsupervised adaptation of an ECoG based brain–computer interface using neural correlates of task performance
Brain–computer interfaces (BCIs) translate brain signals into commands to external effectors, and mainly target severely disabled users. The usability of BCIs may be improved by reducing their major constraints, such as the necessity for special training sessions to initially calibrate and later kee...
Autores principales: | Rouanne, Vincent, Costecalde, Thomas, Benabid, Alim Louis, Aksenova, Tetiana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734147/ https://www.ncbi.nlm.nih.gov/pubmed/36494390 http://dx.doi.org/10.1038/s41598-022-25049-w |
Ejemplares similares
-
Recursive Exponentially Weighted N-way Partial Least Squares Regression with Recursive-Validation of Hyper-Parameters in Brain-Computer Interface Applications
por: Eliseyev, Andrey, et al.
Publicado: (2017) -
Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording
por: Eliseyev, Andrey, et al.
Publicado: (2016) -
Slippery Epidural ECoG Electrode for High-Performance Neural Recording and Interface
por: Alahi, Md Eshrat E., et al.
Publicado: (2022) -
Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance
por: Śliwowski, Maciej, et al.
Publicado: (2023) -
Can Electrocorticography (ECoG) Support Robust and Powerful Brain–Computer Interfaces?
por: Schalk, Gerwin
Publicado: (2010)