Cargando…
Chromatin state distribution of residue-specific histone acetylation in early myoblast differentiation
Dynamic changes in epigenetic landscape reflect a critical command of lineage-specific gene expression. In an effort to discern the epigenetic regulatory networks of myogenic differentiation, we have used systematic and integrative approaches to explore multi-omics datasets on global myogenic gene e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734207/ https://www.ncbi.nlm.nih.gov/pubmed/36514349 http://dx.doi.org/10.1186/s40537-022-00667-3 |
Sumario: | Dynamic changes in epigenetic landscape reflect a critical command of lineage-specific gene expression. In an effort to discern the epigenetic regulatory networks of myogenic differentiation, we have used systematic and integrative approaches to explore multi-omics datasets on global myogenic gene expression, histone acetylation and acetyltransferase occupancy in view of distinct chromatin states. In this brief report, we discuss experimental design and provide a comprehensive assessment regarding data quality control, filtering and processing. We also define a gene-level overlap between RNA-seq and ChIP-seq datasets through integrative analyses to offer strategies for future use of the data. Furthermore, our analyses generate a blueprint on chromatin state distribution of residue-specific histone acetylation and concomitant association with histone acetyltransferase p300 in committed skeletal myoblasts and differential histone acetylation signatures at the onset of myoblast differentiation. These datasets can be further utilized to delineate the function of muscle-specific regulatory elements governed by other muscle myogenic regulators or signaling molecules. |
---|