Cargando…
A supervised machine learning model for imputing missing boarding stops in smart card data
Public transport has become an essential part of urban existence with increased population densities and environmental awareness. Large quantities of data are currently generated, allowing for more robust methods to understand travel behavior by harvesting smart card usage. However, public transport...
Autores principales: | Shalit, Nadav, Fire, Michael, Ben-Elia, Eran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734418/ http://dx.doi.org/10.1007/s12469-022-00309-0 |
Ejemplares similares
-
Graph Machine Learning
for Improved Imputation of
Missing Tropospheric Ozone Data
por: Betancourt, Clara, et al.
Publicado: (2023) -
The impact of imputation quality on machine learning classifiers for datasets with missing values
por: Shadbahr, Tolou, et al.
Publicado: (2023) -
The Optimal Machine Learning-Based Missing Data Imputation for the Cox Proportional Hazard Model
por: Guo, Chao-Yu, et al.
Publicado: (2021) -
Imputation by feature importance (IBFI): A methodology to envelop machine learning method for imputing missing patterns in time series data
por: Mir, Adil Aslam, et al.
Publicado: (2022) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018)