Cargando…
A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks
We compared seven node vaccination strategies in twelve real-world complex networks. The node vaccination strategies are modeled as node removal on networks. We performed node vaccination strategies both removing nodes according to the initial network structure, i.e., non-adaptive approach, and perf...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734664/ https://www.ncbi.nlm.nih.gov/pubmed/36494427 http://dx.doi.org/10.1038/s41598-022-24652-1 |
_version_ | 1784846623100108800 |
---|---|
author | Sartori, F. Turchetto, M. Bellingeri, M. Scotognella, F. Alfieri, R. Nguyen, N.-K.-K. Le, T.-T. Nguyen, Q. Cassi, D. |
author_facet | Sartori, F. Turchetto, M. Bellingeri, M. Scotognella, F. Alfieri, R. Nguyen, N.-K.-K. Le, T.-T. Nguyen, Q. Cassi, D. |
author_sort | Sartori, F. |
collection | PubMed |
description | We compared seven node vaccination strategies in twelve real-world complex networks. The node vaccination strategies are modeled as node removal on networks. We performed node vaccination strategies both removing nodes according to the initial network structure, i.e., non-adaptive approach, and performing partial node rank recalculation after node removal, i.e., semi-adaptive approach. To quantify the efficacy of each vaccination strategy, we used three epidemic spread indicators: the size of the largest connected component, the total number of infected at the end of the epidemic, and the maximum number of simultaneously infected individuals. We show that the best vaccination strategies in the non-adaptive and semi-adaptive approaches are different and that the best strategy also depends on the number of available vaccines. Furthermore, a partial recalculation of the node centrality increases the efficacy of the vaccination strategies by up to 80%. |
format | Online Article Text |
id | pubmed-9734664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-97346642022-12-11 A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks Sartori, F. Turchetto, M. Bellingeri, M. Scotognella, F. Alfieri, R. Nguyen, N.-K.-K. Le, T.-T. Nguyen, Q. Cassi, D. Sci Rep Article We compared seven node vaccination strategies in twelve real-world complex networks. The node vaccination strategies are modeled as node removal on networks. We performed node vaccination strategies both removing nodes according to the initial network structure, i.e., non-adaptive approach, and performing partial node rank recalculation after node removal, i.e., semi-adaptive approach. To quantify the efficacy of each vaccination strategy, we used three epidemic spread indicators: the size of the largest connected component, the total number of infected at the end of the epidemic, and the maximum number of simultaneously infected individuals. We show that the best vaccination strategies in the non-adaptive and semi-adaptive approaches are different and that the best strategy also depends on the number of available vaccines. Furthermore, a partial recalculation of the node centrality increases the efficacy of the vaccination strategies by up to 80%. Nature Publishing Group UK 2022-12-09 /pmc/articles/PMC9734664/ /pubmed/36494427 http://dx.doi.org/10.1038/s41598-022-24652-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sartori, F. Turchetto, M. Bellingeri, M. Scotognella, F. Alfieri, R. Nguyen, N.-K.-K. Le, T.-T. Nguyen, Q. Cassi, D. A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks |
title | A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks |
title_full | A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks |
title_fullStr | A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks |
title_full_unstemmed | A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks |
title_short | A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks |
title_sort | comparison of node vaccination strategies to halt sir epidemic spreading in real-world complex networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734664/ https://www.ncbi.nlm.nih.gov/pubmed/36494427 http://dx.doi.org/10.1038/s41598-022-24652-1 |
work_keys_str_mv | AT sartorif acomparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT turchettom acomparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT bellingerim acomparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT scotognellaf acomparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT alfierir acomparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT nguyennkk acomparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT lett acomparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT nguyenq acomparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT cassid acomparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT sartorif comparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT turchettom comparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT bellingerim comparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT scotognellaf comparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT alfierir comparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT nguyennkk comparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT lett comparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT nguyenq comparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks AT cassid comparisonofnodevaccinationstrategiestohaltsirepidemicspreadinginrealworldcomplexnetworks |