Cargando…

Mining of novel secondary metabolite biosynthetic gene clusters from acid mine drainage

Acid mine drainage (AMD) is usually acidic (pH < 4) and contains high concentrations of dissolved metals and metalloids, making AMD a typical representative of extreme environments. Recent studies have shown that microbes play a key role in AMD bioremediation, and secondary metabolite biosyntheti...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ling, Liu, Wan, Liang, Jieliang, Zhao, Linna, Li, Qiang, Zhou, Chenfen, Cen, Hui, Weng, Qingbei, Zhang, Guoqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734747/
https://www.ncbi.nlm.nih.gov/pubmed/36494363
http://dx.doi.org/10.1038/s41597-022-01866-6
Descripción
Sumario:Acid mine drainage (AMD) is usually acidic (pH < 4) and contains high concentrations of dissolved metals and metalloids, making AMD a typical representative of extreme environments. Recent studies have shown that microbes play a key role in AMD bioremediation, and secondary metabolite biosynthetic gene clusters (smBGCs) from AMD microbes are important resources for the synthesis of antibacterial and anticancer drugs. Here, 179 samples from 13 mineral types were used to analyze the putative novel microorganisms and secondary metabolites in AMD environments. Among 7,007 qualified metagenome-assembled genomes (MAGs) mined from these datasets, 6,340 MAGs could not be assigned to any GTDB species representative. Overall, 11,856 smBGCs in eight categories were obtained from 7,007 qualified MAGs, and 10,899 smBGCs were identified as putative novel smBGCs. We anticipate that these datasets will accelerate research in the field of AMD bioremediation, aid in the discovery of novel secondary metabolites, and facilitate investigation into gene functions, metabolic pathways, and CNPS cycles in AMD.