Cargando…
Modular knots, automorphic forms, and the Rademacher symbols for triangle groups
É. Ghys proved that the linking numbers of modular knots and the “missing” trefoil [Formula: see text] in [Formula: see text] coincide with the values of a highly ubiquitous function called the Rademacher symbol for [Formula: see text] . In this article, we replace [Formula: see text] by the triangl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734963/ https://www.ncbi.nlm.nih.gov/pubmed/36533096 http://dx.doi.org/10.1007/s40687-022-00366-8 |
Sumario: | É. Ghys proved that the linking numbers of modular knots and the “missing” trefoil [Formula: see text] in [Formula: see text] coincide with the values of a highly ubiquitous function called the Rademacher symbol for [Formula: see text] . In this article, we replace [Formula: see text] by the triangle group [Formula: see text] for any coprime pair (p, q) of integers with [Formula: see text] . We invoke the theory of harmonic Maass forms for [Formula: see text] to introduce the notion of the Rademacher symbol [Formula: see text] , and provide several characterizations. Among other things, we generalize Ghys’s theorem for modular knots around any “missing” torus knot [Formula: see text] in [Formula: see text] and in a lens space. |
---|