Cargando…
FIRE: knowledge-enhanced recommendation with feature interaction and intent-aware attention networks
To solve the information overload issue and enhance the user experience of various web applications, recommender systems aim to better model user interests and preferences. Knowledge Graphs (KGs), consisting of real-world objective facts and fruitful entities, play a vital role in recommender system...
Autores principales: | Zhang, Ruoyi, Ma, Huifang, Li, Qingfeng, Wang, Yike, Li, Zhixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734987/ https://www.ncbi.nlm.nih.gov/pubmed/36531970 http://dx.doi.org/10.1007/s10489-022-04300-x |
Ejemplares similares
-
Self-Attention Based Time-Rating-Aware Context Recommender System
por: Zha, Yongfu, et al.
Publicado: (2022) -
The Impact of the Innovative Knowledge of Customers on Their Recommendation Intentions
por: Zhang, Fenghua, et al.
Publicado: (2020) -
Dynamic and Static Features-Aware Recommendation with Graph Neural Networks
por: Sun, Ninghua, et al.
Publicado: (2022) -
CFDIL: a context-aware feature deep interaction learning for app recommendation
por: Hao, Qingbo, et al.
Publicado: (2022) -
Multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet
por: Wang, YueQun, et al.
Publicado: (2021)