Cargando…
A deep learning method to map tissue architecture
A new study in Nature Methods describes a computational method named UTAG (unsupervised discovery of tissue architecture with graphs) that aims to identify and quantify higher-level tissue domains from biological images without previous knowledge.
Autor principal: | Koch, Linda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735151/ https://www.ncbi.nlm.nih.gov/pubmed/36473953 http://dx.doi.org/10.1038/s41576-022-00564-8 |
Ejemplares similares
-
Deep C diving: mapping the low-abundance modifications of the DNA demethylation pathway
por: Thomson, John P, et al.
Publicado: (2013) -
Deep Learning Deepens the Analysis of Alternative Splicing
por: Zou, Xudong, et al.
Publicado: (2019) -
Deep Learning Deciphers Protein–RNA Interaction
por: Li, Ming
Publicado: (2019) -
Highlight—The Deep Mystery of Mother’s Milk
por: Venton, Danielle
Publicado: (2014) -
Highlight: A Deep Dive into the Adaptive Radiation of Clownfish
por: McGrath, Casey
Publicado: (2023)