Cargando…
Detection of Image Level Forgery with Various Constraints Using DFDC Full and Sample Datasets
The emergence of advanced machine learning or deep learning techniques such as autoencoders and generative adversarial networks, can generate images known as deepfakes, which astonishingly resemble the realistic images. These deepfake images are hard to distinguish from the real images and are being...
Autores principales: | Lamichhane, Barsha, Thapa, Keshav, Yang, Sung-Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735533/ https://www.ncbi.nlm.nih.gov/pubmed/36501822 http://dx.doi.org/10.3390/s22239121 |
Ejemplares similares
-
Exposing Image Forgery by Detecting Consistency of Shadow
por: Ke, Yongzhen, et al.
Publicado: (2014) -
The tremor of forgery /
por: Highsmith, Patricia, 1921-1995
Publicado: (1982) -
Forgery Detection in Digital Images by Multi-Scale Noise Estimation
por: Gardella, Marina, et al.
Publicado: (2021) -
BiDFDC-Net: a dense connection network based on bi-directional feedback for skin image segmentation
por: Jiang, Jinyun, et al.
Publicado: (2023) -
Forgery Detection and Value Identification of Euro Banknotes
por: Bruna, Arcangelo, et al.
Publicado: (2013)