Cargando…
Application of Transformer Models to Landslide Susceptibility Mapping
Landslide susceptibility mapping (LSM) is of great significance for the identification and prevention of geological hazards. LSM is based on convolutional neural networks (CNNs); CNNs use fixed convolutional kernels, focus more on local information and do not retain spatial information. This is a pr...
Autores principales: | Bao, Shuai, Liu, Jiping, Wang, Liang, Zhao, Xizhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735583/ https://www.ncbi.nlm.nih.gov/pubmed/36501806 http://dx.doi.org/10.3390/s22239104 |
Ejemplares similares
-
Landslide Susceptibility Mapping by Fusing Convolutional Neural Networks and Vision Transformer
por: Bao, Shuai, et al.
Publicado: (2022) -
The importance of input data on landslide susceptibility mapping
por: Gaidzik, Krzysztof, et al.
Publicado: (2021) -
Deep learning-based landslide susceptibility mapping
por: Azarafza, Mohammad, et al.
Publicado: (2021) -
Susceptibility mapping and zoning of highway landslide disasters in China
por: Yin, Chao, et al.
Publicado: (2020) -
Geoinformation-based landslide susceptibility mapping in subtropical area
por: Zhou, Xiaoting, et al.
Publicado: (2021)