Cargando…

Fog-Assisted Deep-Learning-Empowered Intrusion Detection System for RPL-Based Resource-Constrained Smart Industries

The Internet of Things (IoT) is a prominent and advanced network communication technology that has familiarized the world with smart industries. The conveniently acquirable nature of IoT makes it susceptible to a diversified range of potential security threats. The literature has brought forth a ple...

Descripción completa

Detalles Bibliográficos
Autores principales: Attique, Danish, Wang, Hao, Wang, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735641/
https://www.ncbi.nlm.nih.gov/pubmed/36502115
http://dx.doi.org/10.3390/s22239416
Descripción
Sumario:The Internet of Things (IoT) is a prominent and advanced network communication technology that has familiarized the world with smart industries. The conveniently acquirable nature of IoT makes it susceptible to a diversified range of potential security threats. The literature has brought forth a plethora of solutions for ensuring secure communications in IoT-based smart industries. However, resource-constrained sectors still demand significant attention. We have proposed a fog-assisted deep learning (DL)-empowered intrusion detection system (IDS) for resource-constrained smart industries. The proposed Cuda–deep neural network gated recurrent unit (Cu-DNNGRU) framework was trained on the N-BaIoT dataset and was evaluated on judicious performance metrics, including accuracy, precision, recall, and F1-score. Additionally, the Cu-DNNGRU was empirically investigated alongside state-of-the-art classifiers, including Cu-LSTMDNN, Cu-BLSTM, and Cu-GRU. An extensive performance comparison was also undertaken among the proposed IDS and some outstanding solutions from the literature. The simulation results showed ample strength with respect to the validation of the proposed framework. The proposed Cu-DNNGRU achieved 99.39% accuracy, 99.09% precision, 98.89% recall, and an F1-score of 99.21%. In the performance comparison, the values were substantially higher than those of the benchmarked schemes, as well as competitive security solutions from the literature.