Cargando…

Broadband and Efficient Envelope Amplifier for Envelope Elimination and Restoration/Envelope Tracking Higher-Efficiency Power Amplifiers

Increasing the efficiency of transmitters, as the largest consumers of energy, is relevant for any wireless communication devices. For higher efficiency, a number of methods are used, including envelope tracking and envelope elimination and restoration. Increasing the bandwidth of used frequencies r...

Descripción completa

Detalles Bibliográficos
Autores principales: Varlamov, Oleg, Nguyen, Dang Canh, Grebennikov, Andrei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735673/
https://www.ncbi.nlm.nih.gov/pubmed/36501872
http://dx.doi.org/10.3390/s22239173
Descripción
Sumario:Increasing the efficiency of transmitters, as the largest consumers of energy, is relevant for any wireless communication devices. For higher efficiency, a number of methods are used, including envelope tracking and envelope elimination and restoration. Increasing the bandwidth of used frequencies requires expanding envelope modulators bandwidth up to 250–500 MHz or more. The possibility of using amplifiers with input signal quantization (AISQ), as an alternative to the most common hybrid envelope tracking modulators, is considered. An approach has been developed for optimizing AISQ characteristics according to the criterion of minimum loss when amplifying modern telecommunication signals with Rayleigh envelope distribution. The optimal quantization levels are determined and the energy characteristics of AISQ are calculated. AISQ loss power is shown to decrease by 1.66 times with two-level quantization, by 2.4 times with three-level quantization, and by a factor of 3.0–3.7 for four–five quantization levels compared to a class B amplifier. With these parameters, AISQ becomes competitive with respect to hybrid envelope tracking modulators but does not have electromagnetic interference from the pulse width modulation (PWM) path.