Cargando…
User-Driven Strategy for In Silico Screening of Reversed-Phase Liquid Chromatography Conditions for Known Pharmaceutical-Related Small Molecules
In the pharmaceutical field, and more precisely in quality control laboratories, robust liquid chromatographic methods are needed to separate and analyze mixtures of compounds. The development of such chromatographic methods for new mixtures can result in a long and tedious process even while using...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735675/ https://www.ncbi.nlm.nih.gov/pubmed/36500399 http://dx.doi.org/10.3390/molecules27238306 |
Sumario: | In the pharmaceutical field, and more precisely in quality control laboratories, robust liquid chromatographic methods are needed to separate and analyze mixtures of compounds. The development of such chromatographic methods for new mixtures can result in a long and tedious process even while using the design of experiments methodology. However, developments could be accelerated with the help of in silico screening. In this work, the usefulness of a strategy combining response surface methodology (RSM) followed by multicriteria decision analysis (MCDA) applied to predictions from a quantitative structure–retention relationship (QSRR) model is demonstrated. The developed strategy shows that selecting equations for the retention time prediction models based on the pKa of the compound allows flexibility in the models. The MCDA developed is shown to help to make decisions on different criteria while being robust to the user’s decision on the weights for each criterion. This strategy is proposed for the screening phase of the method lifecycle. The strategy offers the possibility to the user to select chromatographic conditions based on multiple criteria without being too sensitive to the importance given to them. The conditions with the highest desirability are defined as the starting point for further optimization steps. |
---|